Shell Scripts

A series of Commands. A text file.

:

#	Comments

Command 1

Command 2

Control statements

Exit statement

:

This is a comment

VAR=`date`

echo $VAR

STEPS

Edit the file and save (well you usually save it)

Change the mode. Chmod 755 script name

Run it

DEBUGGING

Set -x +x

Set -v +v

:

sample debugging

set -x

VAR=`date`

echo $VAR

SHELL Variables

HOME PATH SHELL

$HOME $PATH $SHELL ${HOME} ${PATH} ${SHELL}

Variable assignment

VAR=”string” VAR=value

VAR =`command result`

Positional parameters

$0 through $9 $0 is the command

 $1-$9 are the arguments passed in

Set and Shift affect the positional parameters

DATA IN / DATA OUT

READ and ECHO

read var

echo ${var}

RESERVED SHELL VARIABLES

$0 ... $9	 args passed in

$* $@	all args

$#		 Number of args passed in

$? Exit value or return code

$$	 PID of current shell

$!		 PID of last background command

Quote Characters

“ “ ‘ ‘ ` `

FANCY OUTPUT

ECHO \b \f \n \r \t \v \c \octal

 \007 is a Bell tone

“\a
” too !

Escape char is \

| |
 and && Simple process control

The if statement… conditional execution

IF [statement] ; THEN IF [statement]

		command				THEN

FI								command

								 FI

IF [statement] ; THEN		 IF [statement] ; THEN

		command					 command

ELSE					 ELIF [statement] ; THEN

		command					 command

FI							 ELSE

									 command

								 FI

CASE value IN					CASE $VAR IN

1)	command						pattern) cmd ;;

	 command						pattern) cmd;;

		;;							 pattern) cmd

2) command								 cmd;;

	 command						 *) ;;

		;;							ESAC

*) command

ESAC

All of the conditional expressions rely on the results of the executed statements or RETURN VALUES.

The most popular is the test command. It has two basic

forms test expression and [expression].

[“$VAR”] true if $VAR is not null

[-z “$VAR”] true if $VAR is null

[-f file] true if file exists and is a regular file

[-d dir] true if dir exists and is a directory

[-s file] true if file exists and is greater than 0 bytes

[S1 = S2] true if both strings are equal

[S1 != S2] true if both strings are not equal

[expression1 -o expression2] true if either is true

There are 32 flags that the test command recognizes. If you are going to do any real scripting you will want to read the test(C) man page!!!

�Using loops for while and do loops

FOR var IN list_item . . . FOR var

DO								 DO

		command							command

DONE							 DONE

In the first example var is replaced with each list_item until the list is exhausted. In the second example var is replaced with each item passed in as arguments or positional parameters $1, $2, $3 etc.

WHILE expression or command evaluates to true

DO

		command

DONE

UNTIL expression or command evaluates to true

DO

		command

	 command

DONE

The for loop continues in a loop until a list is exhausted

but the while and until loops continue until a condition

is satisfied. The while loop drops out when false and the until loop drops out when true.

BREAK and CONTINUE

The BREAK and CONTINUE statements can be used in shell loops to drop out of a loop prematurely or skip to the next loop iteration. The BREAK statement forces control to drop out of the inner most loop or the current loop. The BREAK # where # is a number will cause control to drop out of the inner most N loops.

The CONTINUE statement says skip the rest of the commands in the loop and start from the top.

while read LINE

do

		if [“$LINE” = “quit”] ; then

			break

	 elif [“$LINE” = “skip”] ; then

			continue

		else

			echo $LINE

		fi

done

READ

The read command reads an entire line into a variable.

By default read will scan standard input (stdin, 0) unless otherwise redirected.

COUNTING

Shell scripts are a slow way to count numbers but it can be done with the expr command.
 Look on page 420 of your text or the man pages.

VALUE=0

VALUE=`
expr
 $VALUE + 1`

echo $VALUE

More Po
s
i
tional parameters

The
set
 and
shift
 commands adjust the shell scripts argument list known as positional parameters.

redirection of I/O

2>&1

exec command file descriptors

Back quotes single and double
…

