Regular Expressions (RegEx)

Regular Expression is the name given to a pattern matching syntax that is used throughout the unix environment. RegEx are made up of nonmeta-characters such as the letters A through z and the metacharacters shown below.

 \ ^ $. [] | () * + ?

Metacharacters have special meanings. When used together with nonmetacharacters these letters and symbols form a powerful pattern matching language. Whether you know it or not you use RegEx all the time.

 For example … ls -l *doc lab*

The “doc” and the “lab” are the fixed portion of the RegEx. This matches all the files that have “doc” as the last part of the name and “lab” as the first. The “*” is called by many the wildcard.

Okay, What are they ?

\ 		An escape char, removes the special 				meaning of a metacharacter. \\

^ 		The beginning of a line ^hello

$ 		The end of a line world$

. 		Any single character

[] 		A set of or list of characters (or range)

[-]	A set of or list of characters (shorthand)

()		Used for grouping of expressions

|		Alternative patterns or strings

?		Zero or one occurrence of a pattern

+		One or more occurrences of a pattern

*		Zero or more occurrences of a pattern

Before we start we need to define just what is a line anyway. In the Unix world, a text file is made up of individual lines. It is the new line character “\n” that separates these lines.

^	The beginning of a line, put another way it’s

	the first character in the file or the first char-

	acter after a “\n”.

$	The end of a line, it matches the last char-

	acter before a “\n”.

.	Any single character anywhere on the line.

Samples:

	^First		Last$		^Only$ ^$ = blank line

	^.$		Any single character line.		

	^…$	Any line with only 3 characters.

	…		Any three characters.

[]		A set of character contained within the

		brackets.

[-]	The short hand version to describe large

		sets of characters.

Samples:

[abc]	 Matches just a, b or c.

[a-h]	 Matches a, b, c, d, e, f, g and h.

[0-9]	 Matches all digits.

[a-z]	 Matches all lower case letters.

[A-Z]	 Matches all upper case letters.

[A-z]	 Matches all letters.

[^0-9] A complement set, anything but a digit.

|		Alternation character allows for either | or

		choices to be selected.

()		Allows for grouping series of expressions.

Samples:

(Asian | European | American) (male | female) (black | blue)bird

Will match 12 different combinations of strings.

 Asian male blackbird through

American female bluebird

?	 Zero or one, a null/empty string or just one

	 character or string. Think of “optional”.

Sample:

AB?C	 Matches AC and ABC since B? says it is

okay for B to be missing (null) or just have a single B. Remember that B can

also be a pattern represented by (B) where B is another regular expression.

+	 One or more occurrences of a character or

	 string.

Sample:

[0-9]+	 Matches one or more digits.

[A-Z]+	 Matches one or more upper case letters.

(AB)+C Matches one or more AB followed by C.

		 ABC, ABABC, ABABABC …

		 Also remember that (AB) is a RegEx.

*	 Zero or more occurrences of a character or

	 string. This is the most popular and the

	 most difficult to master when using RegEx.

Samples of *:

B*		Matches B or the null string.

AB*C Matches AC, ABC, ABBC, ABBBC …

As before B can be stated as (B) and the examples would look like (B)* and A(B)*C. Any

pattern or RegEx within the () will do.

If a pattern of letters does not contain any meta-

characters it can be stated as itself. If r is a RegEx then it must be shown as (r), if not then

r will work.

\.$ the period at the end of a line

<string> match in vi for a string

Okay What’s do these mean ?

 ^[0-9]+$ = ^([0-9])+$

	^[0-9][0-9][0-9]$

(\+|-)?		Matches an optional + or - sign.

([0-9]+\.?[0-9]*|\.[0-9]+)		What’s this?

First lets remove the () and split it in to two.

[0-9]+\.?[0-9]* and \.[0-9]+

One or more digits followed by an optional

period and zero or more digits.

				- or -

A period followed by one or more digits.

123, 1., 12.2, .3, .456 …

One more time (

(\+|-)?([0-9]+\.?[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)?

(\+|-)?

([0-9]+\.?[0-9* -or- \.[0-9]+)

([eE](\+|-)?[0-9]+)?

Use the egrep(C) command to test this.

Books and articles of reference:

The AWK programming Language, Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger.

Regular Expressions Languages, algorithms, and

software Brian W. Kernighan and Rob Pike.

Dr Dobb’s Journal April 1999.

