Shell Scripts

A series of Commands. A text file.

#! /bin/sh

#	Comments

Command 1

Command 2

Control statements

Exit statement

#! /bin/sh

This is a comment

VAR=`date`

echo $VAR

STEPS

Edit the file and save (well you usually save it)

Change the mode. Chmod 755 script name, must have r-x

Run it

DEBUGGING

Set -x +x

Set -v +v

#! /bin/sh

sample debugging

set -x

VAR=`date`

echo $VAR

SHELL Variables

HOME PATH SHELL

$HOME $PATH $SHELL ${HOME} ${PATH} ${SHELL}

Variable assignment

VAR=”string” 			 VAR=”hello world”

VAR=value 			 VAR=5 or VAR=128

VAR =`command result` VAR is loaded with stdout output

						 VAR=`date` VAR=`expr 10 + 5`

The dot “.” command = No subshell

Positional parameters

$0 through $9 $0 is the command

 $1-$9 are the arguments passed in

Set and Shift affect the positional parameters

DATA IN read / DATA OUT echo

read var

echo ${var}

read var1 var2 var3		one two three four

echo $var1		one

echo $var2		two

echo $var3		“three four”

RESERVED SHELL VARIABLES

$0 ... $9	 args passed in

$* $@	all args

$#		 Number of args passed in

$? Exit value or return code

$$	 PID of current shell

$!		 PID of last background command

Quote Characters

“ “ ‘ ‘ ` `

FANCY OUTPUT

echo \b \f \n \r \t \v \c \octal

 \007 is a Bell tone \a too

Escape char is \

 | | and && Simple process control

program1 || program2

	program2 runs if program1 returns an error

program1 && program2

	program2 runs if program1 returned no error

�
The if statement… conditional execution

IF [statement] ; THEN IF [statement]

		command				THEN

FI								command

								 FI

IF [statement] ; THEN		 IF [statement] ; THEN

		command					 command

ELSE					 ELIF [statement] ; THEN

		command					 command

FI							 ELSE

									 command

								 FI

CASE value IN					CASE $VAR IN

1)	command						pattern) cmd ;;

	 command						pattern) cmd;;

		;;							 pattern) cmd

2) command								 cmd;;

	 command						 *) ;;

		;;							ESAC

*) command

ESAC

All of the conditional expressions rely on the results of the executed statements or RETURN VALUES.

The most popular is the test command. It has two basic

forms test expression and [expression].

�
Be aware of the difference between a programs return value

(exit code/value) and the ouput of the command. The if

statement depends on the return value. It just so happens that

the test(C) command compares the output of commands and

text strings within the [] and then returns either a zero or non

zero exit code or value. To make things a little more tricky

most programs return 0 when there are no errors. So the

statement “ if command ; then “ will evaluate to true if

the command returns 0 and not 1.

[“$VAR”] true if $VAR is not null

[-z “$VAR”] true if $VAR is null

[-f file] true if file exists and is a regular file

[-d dir] true if dir exists and is a directory

[-s file] true if file exists and is greater than 0 bytes

[S1 = S2] true if both strings are equal

[S1 != S2] true if both strings are not equal

[expression1 -o expression2] true if either is true

There are 32 flags that the test command recognizes. If you are going to do any real scripting you will want to read the test(C) man page!!!

�
Using loops for while and do loops

FOR var IN list_item . . . FOR var

DO								 DO

		command							command

DONE							 DONE

In the first example var is replaced with each list_item until the list is exhausted. In the second example var is replaced with each item passed in as arguments or positional parameters $1, $2, $3 etc.

WHILE expression or command evaluates to true

DO

		command

DONE

UNTIL expression or command evaluates to true

DO

		command

	 command

DONE

The for loop continues in a loop until a list is exhausted

but the while and until loops continue until a condition

is satisfied. The while loop drops out when false and the until loop drops out when true.

BREAK and CONTINUE

The BREAK and CONTINUE statements can be used in shell loops to drop out of a loop prematurely or skip to the next loop iteration. The BREAK statement forces control to drop out of the inner most loop or the current loop. The BREAK # where # is a number will cause control to drop out of the inner most N loops.

The CONTINUE statement says skip the rest of the commands in the loop and start from the top.

while read LINE

do

		if [“$LINE” = “quit”] ; then

			break

	 elif [“$LINE” = “skip”] ; then

			continue

		else

			echo $LINE

		fi

done

READ

The read command reads an entire line into a variable.

By default read will scan standard input (stdin, 0) unless otherwise redirected.

COUNTING

Shell scripts are a slow way to count numbers but it can be done with the expr command. Look on page 420 of your text or the man pages.

VALUE=0

VALUE=` expr $VALUE + 1`

echo $VALUE

More Positional Parameters

The set and shift commands adjust the shell scripts argument list known as positional parameters. They also allow the script to access specific fields within a record.

The shift command decrements the variable location with every call.

	

		$1=A		$2=B		$3=C		$4=””

	 shift

		$1=B		$2=C		$3=””		$4=””

The set command assigns a variable to the positional parameter list.

		VAR=”Hello I must be going”

		set $VAR

	$1=Hello	$2=I	$3=must	$4=be	$5=going $6=””

Redirection of I/O

The normal file descriptors are 0, 1 and 2. The syntax

2>&1 can be read as take file descriptor 2 and redirect it to the address of 1. (The same place that 1 points to)

You can also use the exec command with file descriptors to manipulate the file descriptors within a shell script.

exec 3<&0		Save stdin at position 3

exec 4>&1		Save stdout at position 4

exec 5>&2		Save stderr at position 5

exec 0<&3		Restore stdin from position 3

exec 1>&4		Restore stdout from position 4

exec 2>&5		Restore stderr from position 5

:

if [${1}” = “”] ; then

		echo “input file required”

		exit 0

fi

exec 0<$1

while read INPUT

do

		echo $INPUT

done

Shell Functions

Many times there is a need to group shell script function together so you can keep the script as simple as possible.

The shell supports the use of functions.

Shell functions are easy to define and easy to call.

The arguments to a function are the same as a regular shell script. The example below defines a shell function

and how to call it.

:

A sample shell function

check_input() {

case $1 in

 Y|y) return 0 ;;

	 N|n) return 0 ;;

 *) return 1 ;;

esac

}

if check_input $value ; then

		proceed … # function returned 0

else

		error # function returned 1

fi

Depending how you wrote the function you may call it with many arguments. (Note: you may want to save previous arguments to the shell before calling functions.)

Cursor Motion

Some people like to create fancy screens for their shell scripts. You can create some very nice menus too!

The tput(C) command can be used to place the cursor anywhere on the screen that you like. The syntax to

put the cursor in the top left hand corner of the screen

would either be

		clear					

		tput home

		tput	 cup 0 0

The tput cup row column syntax can be very useful for

menus that need to be updated without redrawing the entire screen. The lower right hand corner of the screen

would be 	tput cup 24 79. Be careful about putting the cursor on the last line and the last column. The terminal will try to move the cursor to the next position when you write something and cause your entire menu to

scroll up one line.

It is possible to access and use bold, inverse, graphic and blinking text with your shell scripts. All you need to do

is look at the terminfo entry for your terminal and verify it with the tput command.

Signal handling and Shell Scripts

It is possible to create extremely powerful shell scripts that can block and or catch signals. With this feature it

is possible to prevent interruption of commands. You

may also allow commands to terminate and allow the script to keep running. On receipt of a signal a script may change it’s course of action or clean up and terminate.

The trap syntax is used to tell the shell how it should set up signal handling for the script.

trap “” 2 3

The basic syntax is the trap command followed by a pair of double quotes together and the signal list. The adjacent quotes tell the script to block signal 2 and 3.

trap “ “ 2 3

The syntax where the quotes are separated tell the shell to allow the signal to pass through to the commands that are executing but don’t terminate the shell script.

trap “ cleanup” 2 3

This syntax says when you receive a signal 2 or 3 call the cleanup function or command. This function may or may not exit. It’s up to you.

