Chapter 9

Process & Processor

The terms Multitasking, Multiprocessing and Multi-

programming are all terms that refer to software. They

all mean multiple programs running at the same time.

Multiuser is a term for the ability to run more than one

person’s program at any one time. This is closely related

to the concept of user IDs.

Multiprocessor is a hardware term. It refers to the number

of CPUs on the system. Most desktop machines are what is known as uni-processor systems or single CPU systems.

A running program or “process” is allowed a maximum of

one unit of time before it has to give up the CPU to another

process waiting to run. This one unit of time is called a

time slice. On a SCO Unix System, a time slice is 1/100th

of one second. This is the maximum however, a process may give up the CPU long before it has used a full clock tic. For example: If a program makes a request of the system (disk I/O) that can’t be provided right away, the program will give up the CPU so another program that is

ready to run may have access to the CPU.

A running program is divided up into three parts. These are program TEXT, program DATA and the STACK.

You can think of TEXT as the program’s instructions. DATA would be storage, and the STACK would be the

suspenders that keep the program together. If several users are running the same program (/bin/ksh), all of the users are sharing the SAME TEXT of /bin/ksh . Each of these users do however have their own DATA segment and STACK. What’s the advantage to shared TEXT ???

FORK & EXEC

Fork and Exec are the foundation for Unix process creation. Fork or spawn as it’s referred to in the text book is the Unix copy machine. It duplicates an existing running process. This new process gets it’s own process ID known as PID and the it’s PPID is the PID of original process. This new process is said to be the child process of the original. The original is called the parent process.

You couldn’t get much done if you ran a bunch of the same programs. The EXEC system call/command replaces an existing process image with a new process. Every time that you type a command at the shell prompt and press return, the shell does a FORK of itself and then EXECs

the selected command to run. The shell then waits for the

command to complete before giving the you your prompt

back.

If you didn’t want the shell to wait for the process to finish so you could start another command, you could tell the shell to start it in the BACKGROUND. How ?

The & syntax

If you append a “&” to the end of any command you type the shell will start it and present you with another prompt before the command completes. You may start many such commands. Each of these commands will have it’s own PID and they will all have the same PPID, your shell.

The “&” means run the program in the background. If however you wanted to wait for the completion of one or more background process you could use the wait command to force the shell halt until a background process had completed.

Samples:

		command & try sleep 10 &

		wait or wait pid

What’s the difference between a process and a ZOMBIE?

Communicating with running processes

Signals are a form of IPC (inter-process communication)

that are usually used to terminate programs. If a program does something incorrectly the system will send that program a specific type of signal. Different signals are for different mistakes. The kill command can be thought of as a user’s process control command.

Kill(C) process control ???

 kill 0 kill -# pid

 kill pid is the same as kill -15 pid

Signals

1	sighup hangup signal

2 sigint the delete key “interrupt”

3 sigquit Ctrl \ quit, I mean it!!!

9 sigkill See Ya, say good night

15 sigterm please terminate

process status the ps(C) command

page 170-172 of the text

ps ps -elf

nice -# command where # can be 0-39

root can use – nice -n 10 bigjob ; nice --10 vpjob

The tee command and script.

	who | tee user.list | wc -l

The at, cron, and batch commands.

	at (C) a one time shot, you specify the time.

 batch (C) when you get around to it, low system load.

 cron (C) make this a repetitive scheduled event

