Chapter 7

Your Own File System

The concept of OWNERSHIP and PERMISSIONS provide the foundation for UNIX security. Without them there would be little hope of having many people share the same disk space smoothly.

All users are provided a unique identification number that is mapped to their account name. This is their user ID. They may also have one or more other ID numbers that signify that they are members of groups.

This is their group ID. These identification numbers are known as the UID and GID. These are ownership

numbers.

 Any identification numbers not belonging to yourself or your group are known as other. Another way to think of other is “the rest of the system” or “everybody else”. The book uses “public”.

These identification numbers would have little meaning alone however. This is where the idea of permissions comes into play. There are 3 basic permissions. They are Read, Write and Execute.

Octal Numbers and beyond (

Binary numbers have only two choices for digits. These are the numbers zero and one. Octal numbers

which are base 8 use three binary bits to form their numbers which range from 0 to 7.

		 000 = 0 That’s a big Zero

 		 001 = 1 	

 		 010 = 2

 	 011 = 3

 	 100 = 4

 	 101 = 5

 	 110 = 6

 	 111 = 7

0 = 000	= - - - 	=	No permission

1 = 001	= - - x		= eXecute permission

2 = 010	= - w-		=	Write permission

4 = 100	= r - -		=	Read permission

The other numbers 3, 5, 6 and 7 are just combinations of the three basic permissions shown above.

�
Each file has 4 sets of these fields that are displayed in space reserved for only 3. Ignoring that 4th field, a files permissions can be displayed as …

user public or other

rwx rwx rwx 1 john group 2048 Mar 4 17:30

 group

Some extra bits for good measure . . .

There is actually a fourth field for permissions. This

fourth field governs files that are executed. The values are

0 = 000 = --- --- --- = No override of permissions

1 = 001 = --- --- --T = Set sticky bit.

2 = 010 = --- --s --- = Set group ID on execution

4 = 100 = --s --- --- = Set user ID on execution

A program that has it’s SUID or SGID bit set will run with the ownership or group of the program instead of the user who ran the program. For example, a program is owned by “backup” and has it’s SUID bit set. If the user named “john” were to run the program it would run as “backup” instead of “john”.

This feature is widely used by the OS utilities and can be of great use for system administrators because it allows normal users to run “trusted” programs which have access to system resources. The lp subsystem

(printers) uses this. There are four fields that govern access permissions however only three fields to display them. More on this later.

Okay Lets Change them !!!

There are three utilities that can change the file permissions (file mode), file ownership and group membership.

chmod		Change file mode or permissions.

chown		Change file ownership

chgrp			Change file group membership

Be extremely careful about giving the ownership of a file away. Once it’s gone, you can’t take it back. It is a one way deal ! ! !

As long as you are the owner of the file you can change the group ownership to anything you want and then set it back because you still own it.

As long as you are the owner of the file you can also change the mode of a file to anything you like. You can take permissions away and then restore them. Again it’s because you own it. Some more Examples.

$ ls -l

drwx --- --- 3	 john unix	68 Mar 4 17:30 dirA

- rw- r-- --- 1 john unix	204 Mar 4 17:32 file1

-rwxrwxrwx 1 john unix 55 Mar 4 17:34 file2

$ chmod 751 file2 remember 0 is implied 0751

$ ls -l

drwx --- --- 3 john unix 68 Mar 4 17:30 dirA

- rw- r-- --- 1 john unix 204 Mar 4 17:32 file1

-rwxr-x--x 1 john unix 55 Mar 4 17:34 file2

$ chmod 4711 file2

$ ls -l

drwx ------ 3 john unix 68 Mar 4 17:30 dirA

- rw- r----- 1 john unix 204 Mar 4 17:32 file1

-rws--x--x 1 john unix 55 Mar 4 17:34 file2

			4 = r : readable

			2 = w : writable

			1 = x : executable

Remember we have four fields that control access and only three to display or represent them.

Chmod with relative permissions:

chmod o+r chmod a+r chmod g-w

a = all g = group o = other u = user

+ = add permission - = remove permission

 = = assign permission

chmod 400 = 000 100 000 000 = - r-- --- ---

chmod 111 = 000 001 001 001 = - --x --x --x

chmod 4111 = 100 001 001 001 = - --s --x --x

chmod 6111 = 110 001 001 001 = - --s --s --x

